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In this work, the current-voltage characteristics of a double-gate graphene-based transistor are computed with different methods. A 
simplified semi-analytic method allows fast computation of the electric parameters by granting a good accuracy. A more complex 
method based on the solution of Schrodinger equation by means of non-equilibrium Green’s function is used to validate the semi-
analytic one. The codes will be used to evaluate the impact of mechanical stresses on this novel class of nano-transistors, where they are 
aimed for applications in the domain of flexible electronics. 
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I. INTRODUCTION 
   Carbon-based nanotransistors have recently attracted a lot of 
attention due to their remarkable electronic properties [1]-[3]. 
As one of the emerging carbon materials, graphene has rapidly 
become an ideal candidate for flexible electronic devices [4]. 
In this connection, geometric deformation of graphene-based 
active components is an important issue. 
   In Fig.1 is shown a graphene nanoribbon in a field-effect 
transistor (FET). This geometric configuration will be 
considered in this paper. In our study, a strain is enforced on 
the FETs along the direction of the channel. A compact model 
in Section II will be compared and validated with a rigorous 
approach in Section III. The two models will be used in the 
final paper to study the impact of mechanical strains on the 
transistor properties. 

 
 

Figure 1. (a) Armchair graphene nanoribbon, (b) deformed graphene 
nanoribbon, (c) sectional view of a double-gate aGNR FET. 

II. COMPACT MODEL 
In this section, we propose a semi-analytical model for 

graphene based transistor. In the absence of any deformation, 
graphene energy bands can be calculated with tight binding 
model [5]. In the presence of a relative deformation d (-0.1 ≤ d 
≤ 0.1), the hopping parameters change accordingly, thus 
determining a shift of Fermi points [6]. The energy bands of 
the graphene nanoribbon can be obtained: 
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α=1,…, N defines the energy band,  and aCC is the 
atomic distance between two adjacent atoms, V =  2.7 eV is the 
tight-binding hopping energy without deformation. St is a 
constant and 𝜈𝜈 is the Poisson’s ratio of the graphene, usually 
taken approximately equal to 0.145. 

Starting from (1), the effective mass, density of states and 
transmissivity coefficients Ts and Td through the source and 
drain can be derived. These parameters are used to calculate 
the current by using the Landauer–Büttiker approach [7]: 
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𝑞𝑞 being the electronic charge, f are Fermi-Dirac distributions 
of source and drain, respectively. The integration is performed 
over all the allowed energies in (1). The surface potential φc 
can be calculated by equating the microscopic charges Qe/h 
and the macroscopic charge Qmacro: 
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where Cg, Cs and Cd are the capacitances of gate, source and 
drain, Vg, Vs, Vd are the voltage of gate, source and drain, 
respectively, and VFB,i  are the relevant flatband voltages. 

III. NON EQUILIBRIUM GREEN’S FUNCTION METHOD 
The non-equilibrium Green’s function (NEGF) method is a 

powerful tool to study transport phenomena in nanodevices. 
An extensive treatment of NEGF can be found in [8]-[9]; here 
we give a few definitions of NEGF as a statistical expectation 
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value between the product of fermions operators at different 
positions 𝑖𝑖  and 𝑗𝑗 , at different times 𝑡𝑡  and 𝑡𝑡′ . A full Green’s 
function is given by 

 

𝐺𝐺𝑖𝑖𝑖𝑖𝑐𝑐 = −𝑖𝑖〈𝑇𝑇�𝑐𝑐𝑖𝑖(𝑡𝑡)𝑐𝑐𝑗𝑗
†(𝑡𝑡′)�〉,                    (7) 

 

where 𝑐𝑐𝑗𝑗
†(𝑡𝑡′) creates one electron at site 𝑗𝑗 at time 𝑡𝑡′ and 𝑐𝑐𝑖𝑖(𝑡𝑡) 

annihilates an electron at site 𝑖𝑖 at time 𝑡𝑡. 𝑇𝑇 is a time-ordering 
operator that guarantees causality. As we are dealing with 
electrons, the c operators satisfy the anti-commutation 
relation �𝑐𝑐𝑖𝑖,𝑐𝑐𝑗𝑗� = 0 , �𝑐𝑐𝑖𝑖

†, 𝑐𝑐𝑗𝑗
†� = 0 and �𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗
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{𝐴𝐴,𝐵𝐵} = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵. (7) leads to the retarded Green’s functions 
[10], 
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where 𝜃𝜃(𝑡𝑡) is the Heaviside function. Since Fig. 1 ilustrates a 
2D device, every atom can be indexed with a couple of 
integers. The interaction between sites should rather be 
described by the indexes 𝑚𝑚𝑚𝑚, 𝑖𝑖𝑖𝑖 . To apply (8) to the 
nanoribbon in Fig. 1a, the equation of motion must be 
enforced:  
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   The comutator in the second term of (9) comes form the 
Heisemberg expression for the time evolution of c 
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where the reduced Planck constant is set to unity (ℏ = 1) by 
suitably scaling the Hamiltonian H. All the physics will be 
described by the Hamiltonian in (9), including electron-
electron interactions 𝐻𝐻𝑒𝑒𝑒𝑒 , phonons and photons interactions 
𝐻𝐻𝑝𝑝ℎ, or even electromagnetic interactions 𝐻𝐻𝐸𝐸𝐸𝐸: 

 
𝐻𝐻 =  ∑ 𝜇𝜇𝑐𝑐 𝑙𝑙
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†
𝑙𝑙 𝑐𝑐𝑙𝑙 + 𝐻𝐻𝑝𝑝ℎ + 𝐻𝐻𝐸𝐸𝐸𝐸 + 𝐻𝐻𝑒𝑒𝑒𝑒 . (11) 

 
   In (11) 𝜇𝜇 is the energy of each site (red dots in Fig. 1), 𝑉𝑉 is 
the hopping energy. 𝑙𝑙 is the double-index 𝑚𝑚. If the interaction 
is a simple external bias, to simulate the device in Fig.1c, the 
𝐻𝐻𝐸𝐸𝐸𝐸  term is given by the solution to the Poisson’s equation 
with proper boundary conditions.  
   By Fourier transforming (9) we obtain 
 
(𝜔𝜔 − ∑ 𝛿𝛿𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚 )𝐺𝐺𝑖𝑖𝑖𝑖𝑟𝑟 (𝜔𝜔) = 𝛿𝛿𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚 + ∑ 𝑉𝑉𝐺𝐺𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚

𝑟𝑟 (𝜔𝜔)𝑚𝑚𝑚𝑚 , (12) 
 
where 𝜇𝜇 = 0, 𝜔𝜔 is an energy parameter. (12) has a matrix form 
and is iterative, which means that it can be applied to a real 
device by considering it as composed by several adjacent 
layers of atoms (each layer being a vertical line of connected 
atoms in Fig. 1a). By applying (12) to the FET of Fig. 1 is 
possible to deduce that current is given by 
 

𝐼𝐼𝑑𝑑𝑑𝑑 = 2𝑞𝑞
ℏ ∫𝑑𝑑𝑑𝑑[𝐺𝐺𝑙𝑙1Γ11𝐺𝐺𝑙𝑙1𝑎𝑎 (𝑓𝑓𝑠𝑠(𝜔𝜔 − 𝜑𝜑𝑠𝑠) −  𝑓𝑓𝑑𝑑(𝜔𝜔 − 𝜑𝜑𝑑𝑑)) − 𝑆𝑆(𝜔𝜔)]  

𝑆𝑆(𝜔𝜔) = 𝑖𝑖𝐺𝐺𝑙𝑙𝑙𝑙𝑓𝑓𝑑𝑑(𝜔𝜔 − 𝜑𝜑𝑑𝑑) ,     (13). 

IV. NUMERICAL RESULTS 
   In Fig. 2 we show the current Ids computed by means of the 
compact model described in Section II and the NEGF method 
of Section III. The current is shown for different values of 
drain-source voltage Vds by keeping a zero gate voltage Vg = 0 
V. For simplicity, the current has been computed in the 
absence of a dielectric between the gates, even if both the 
methods can deal with the presence of a dielectric. As shown 
in the figure, the very good agreement between the methods 
fully validates the simplified approach. These results are 
obtained in the absence of deformation; however, in the final 
paper the effect of deformation will be included in both 
methods and a full discussion on both physical and 
computational aspects will be given. 

 
Figure 2. Current Ids vs. drain-source voltage Vds. Vg = 0 V, no dielectric is 

present between the gates. 

V. CONCLUSION 
A simple compact model has been compared with an 

accurate method based on NEGF, yielding very good 
agreement. At the conference, a full validation will be 
presented on the impact of mechanical stress on transistors. 
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